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Definition of the quadratic assignment
problem QAP(A,B)

Input: Size n ∈ N of the problem, two n × n matrices of reals
A = (aij) and B = (bij)

Output: A permutation π of {1, 2, . . . , n} which minimizes
(or maximizes) the objective function

Z (A,B, π) :=
n∑

i=1

n∑
j=1

aπ(i)π(j)bij

Originaly introduced by Koopmans and Beckmann 1957.

Models applications in facility location, backboard wiring, scheduling,
typewriter keyboard design, data ranking, analysis of chemical reactions,...

Books and surveys: Burkard et al. 1998, Ç. 1998, Loyola et al. 2007
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Complexity of the QAP

The QAP is a hard problem intensively studied over the last 50 years

strongly NP-hard, non approximable within a constant approximation
ratio, unless P=NP
(Sahni and Gonzalez, 1976)

even modest size problems, e.g. n = 30, are computationally non
trivial
Adams et al. 2007, Anstreicher at al. 2002, Hahn and Krarup 2001,
Hahn et al. 2012

QAPLIB, www.seas.upenn.edu/qaplib

polynomially solvable special cases for specially structured coefficient
matrices A and B
Burkard et al. 1998, Ç. 1998, Ç. et al. 2011, 2012, Deineko et al.
1998, Erdoǧan et al. 2007, 2011, Kabadi et al. 2011, Laurent et al.
2015, Punnen et al. 2013
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The TSP-QAP

Input: Size n ∈ N of the problem, an n × n matrix D = (aij)
of the distances between any two cities i , j ∈ {1, 2, . . . , n}

Output: A cyclic permutation π of {1, 2, . . . , n} which minimizes
the objective function

n−1∑
i=1

dπ(i)π(i+1) + dπ(n)π(1)

Equivalent formulation as QAP(A,B) of size n:
A = D, B is the matrix of the permutation φ with φ(i) = i + 1, for
i = 1, 2, . . . , n − 1, and φ(n) = 1:

B =


0 1 0 . . . 0 0
0 0 1 . . . 0 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.
0 0 0 . . . 0 1
1 0 0 . . . 0 0
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The FAS-QAP

Given a directed graph G = (V ,E ) a feedback arc set is a subset E ′ ⊆ E
of the arcs, such that (V ,E \ E ′) is a directed acyclic graph .

The feedback arc set problem (FAS)
Input: a directed graph G = (V ,E )
Output: A feedback arc set E ′ of minimum cardinality

(see eg. Festa et al. 2000)

Equivalent formulation as QAP(A,B) of size n := |V |:
A = (aij) is the adjacency matrix of G , B = (bij) is a feedback arc matrix,

bij =
{

1 if 1 ≤ j < i ≤ n
0 if 1 ≤ i ≤ j ≤ n

For any ordering π of the vertices of G :
n∑

i ,j=1

aπ(i)π(j)bij is the number of

arcs leading from vertices with order i ≥ 2 to vertices with order j < i ;
these arcs build a feedback arc set.
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The FAS-QAP
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Definition of the linearizable QAP

The linear assignment problem LAP(C ):
Input: Size n ∈ N of the problem, an n × n matrix of reals

C = (cij)

Output: A permutation π of {1, 2, . . . , n} which minimizes
(or maximizes) the objective function

n∑
i=1

n∑
j=1

ciπ(i)

A QAP(A,B) of size n is called linearizable if there exists an n × n matrix
C such that

n∑
ij=1

aπ(i)π(j)bij =
n∑

i=1

ciπ(i) for all permutations π of {1, 2, . . . , n}

(Bookhold, 1990)
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Which special cases of the QAP(A,B) are
linearizable?

Particular special cases: Erdoǧan 2006, Erdoǧan and Tansel 2007, 20011.

Recognition of linearizable QAP(A,B) in O(n2): Kabadi and Punnen 2011,
Punnen and Kabadi 2013,

Full combinatorial characterization of linearizable QAPs in the case
of symmetric coefficient matrices (Punnen and Kabadi 2013):

QAP(A,B) with symmetric matrices A and B is linearizable, iff one of the
matrices is a weak sum matrix.

A = (aij) is a sum matrix iff ∃αi , βi , 1 ≤ i ≤ n, such that aij = αi + βj ,
∀1 ≤ i , j ≤ n.

A is a weak sum matrix iff it can be turned into a sum matrix by
appropriately changing its diagonal elements.
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Recognition of linearizable QAP(A,B) in O(n2): Kabadi and Punnen 2011,
Punnen and Kabadi 2013,

Full combinatorial characterization of linearizable QAPs in the case
of symmetric coefficient matrices (Punnen and Kabadi 2013):

QAP(A,B) with symmetric matrices A and B is linearizable, iff one of the
matrices is a weak sum matrix.

A = (aij) is a sum matrix iff ∃αi , βi , 1 ≤ i ≤ n, such that aij = αi + βj ,
∀1 ≤ i , j ≤ n.

A is a weak sum matrix iff it can be turned into a sum matrix by
appropriately changing its diagonal elements.
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Some observations

The asymmetric linearizable QAP(A,B) cannot be characterized in
terms of weak sum matrices.

Counterexample: None of A and B is a weak sum matrix, but QAP(A,B)
is linearizable as LAP(C )

A =

(
0 0 1 1
0 0 1 1
0 0 0 0
0 0 0 0

)
B =

(
0 1 1 1
0 0 1 1
0 0 0 1
0 0 0 0

)
C =

(
0 1 2 3
-1 0 1 2
0 0 0 0
0 0 0 0

)

If QAP(A1,B) and QAP(A2,B) are linearizable, then
QAP(λ1A1 + λ2A2,B) is also linearizable for any two reals λ1, λ2.
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Some definitions

A n × n matrix A = (aij) is called a directed cut matrix, iff there exists a
subset of indices ∅ 6= I ≤ {1, 2, . . . , n}, such that aij = 1 for i ∈ I and
j 6∈ I and aij = 0 otherwise.

Three indices i , j , k are said to form a balanced 3-cycle in an n× n matrix
A, if the corresponding entries satisfy

aij + ajk + aki = aik + akj + aji .

A matrix A is called a balanced 3-cycle matrix if every three indices i , j , k
form a balanced 3-cycle.

The n × n balanced 3-cycles matrices form a linear subspace of the n × n
matrices.

Theorem 1: An n × n matrix A is a balanced 3-cycle matrix iff it can be
written as the sum of a symmetric matrix and a linear combination of
directed cut matrices.
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The linearizable FAS-QAP

Observation For every symmetric matrix A the FAS-QAP for matrix A is
linearizable.

Lemma 1: For any directed cut matrix A the FAS-QAP with coefficient
matrix A is linearizable.
Proof:
Let I = {1, 2, . . . , k} and aij = 1 iff i ∈ I , j 6∈ I for 1 ≤ i , j ≤ n.

Consider a permutation π of {1, 2, . . . , n} and let
{π(p1), π(p2), . . . , π(pk)} := {1, 2, . . . , k} with p1 < p2 < . . . < pk .
Then

Z (A,B, π) =
n∑

i,j=1
i>j

aπ(i)π(j) =
k∑

i=1

(pi − i) =
n∑

i=1

ciπ(i)

with cij = 1 if i = 1, 2, . . . , k, j ∈ {1, 2, . . . , n} and cij = 0 otherwise.
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The linearizable FAS-QAP

Theorem 1, Observation and Lemma 1 imply:

If A is a balanced 3-cycle matrix, then the FAS-QAP for matrix A is
linearizable.

Lemma 2: If the FAS-QAP for an n × n matrix A is linearizable, then for
any J ⊆ {1, 2, . . . , n} the FAS-QAP for the principal submatrix A[J] is also
linearizable.

If |J| = 3, the linearizability of the FAS-QAP for matrix A[J] implies that
the corresponding triple forms a balanced 3-cycle.

Theorem 2: The FAS-QAP with a coefficient matrix A (and B a 0-1 lower
triangular matrix with 1-s below the main diagonal and 0-s above it) is
linearizable iff A is a balanced 3-cycle matrix.
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The linearizable TSP-QAP

Proposition (Gabowich 1976, Berenguer 1979, Lawler et al. 1985)
The following two statements are equivalent:
(i) For the distance matrix A all TSP tours have the same length.
(ii) Matrix A is a weak sum matrix.

Observation If the TSP-QAP for matrix A is linearizable, then for the
distance matrix A all TSP tours have the same length.

Theorem The TSP-QAP for matrix A is linearizable, if and only if A is a
weak sum matrix.
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Summary and outlook

Combinatorial characterization of the linarizable FAS-QAP

Combinatorial characterization of the linearizable TSP-QAP

The combinatorial characterization of the linearizable symmetric QAP
is not valid for the linearizable asymmetric QAP

Possible directions for further research:

The linearizable QAP seems to be rare events. It might be interesting
to support this intuition by means of a probabilistic analysis in some
reasonable stochastic model.

Identification of further linearizable families for the asymmetric case

Complete combinatorial characterization of all linearizable asymmetric
QAP instances. (ambicious goal!)
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THANK YOU!
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